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Abstract
We consider Dirac operators H in R

3 with spherically symmetric potentials. The
main result is a criterion for eigenvalue accumulation and non-accumulation at
the endpoints −1 and 1 of the essential spectrum under rather weak assumptions
on the potential. This result is proved by showing an analogous criterion for
the associated radial Dirac operators Hκ and by proving that for |κ| sufficiently
large, each Hκ does not have any eigenvalues in the interval (−1, 0] and [0, 1),
respectively, of the gap (−1, 1) of the essential spectrum. For the latter,
properties of solutions of certain Riccati differential equations depending on
the parameter κ and the spectral parameter are used.

PACS numbers: 03.65.Pm, 02.30.Hq, 02.30.Tb
Mathematics Subject Classification: 81Q10, 34L40, 35Q40

1. Introduction

For the radial Dirac operators Hκ, κ ∈ Z\{0}, associated with the Dirac operator H in L2(R3)4

with a spherically symmetric potential V , criteria for eigenvalue accumulation and non-
accumulation at the endpoints −1 and 1 of the essential spectrum are well known (see [4,
10]). However, these criteria do not allow to draw conclusions for the Dirac operator H itself,
which is the direct sum of the radial Dirac operators Hκ, κ ∈ Z\{0}: even if an endpoint is no
accumulation point for any Hκ , it could well be an accumulation point for H.

In this paper, we solve the problem of eigenvalue accumulation at −1 and 1 for the Dirac
operator H. To this end, we show that for |κ| sufficiently large, each Hκ does not have any
eigenvalues in the interval (−1, 0] and [0, 1), respectively. For the proof of this fact we develop
a theory for Riccati differential equations depending on two parameters (κ and the spectral
parameter), which is also of independent interest. As a second ingredient, we study principal
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solutions of Dirac systems depending on parameters and establish comparison theorems for
them.

The paper is organized as follows: In section 2, we study families of Riccati differential
equations of the form

z′(x) = a(x, λ)z(x)2 + 2κb(x, λ)z(x) + c(x, λ), x ∈ �,

on an interval � = (0, ω] where κ ∈ I := R\(−β, β) with some constant β > 0 and λ is a
parameter varying in some interval � ⊂ R, and we investigate the behaviour of their solutions
for κ → ±∞. For this purpose, we reduce the Riccati equation to an integral equation and
we apply a technique related to the method used in [1] for the uniform asymptotic integration
of linear differential systems.

In section 3, these results are used for a detailed analysis of fundamental matrices of Dirac
systems

Jy ′(x) +

(
a(x, λ) κb(x, λ)

κb(x, λ) c(x, λ)

)
y(x) = 0, x ∈ �, J :=

(
0 1

−1 0

)
depending on κ and λ. The eigenvalue equation for each radial Dirac operator is a special case
of such a system for which b(x, λ) = 1/x, a(x, λ) = V (x)−1−λ and c(x, λ) = V (x) + 1 − λ.
Section 4 contains a comparison theorem for Dirac systems of the general type above.

In section 5, we study the Dirac operator H in L2(R3)4 with spherically symmetric
potential V ∈ L∞

loc(0,∞) such that limx→∞ V (x) = 0 and lim supx→0 |xV (x)| < 1
2

√
3. The

operator H can be decomposed as a direct sum of radial Dirac operators

H = −iα · ∇ + β + V (|x|)I ∼=
⊕

κ∈Z\{0}

�(κ)⊕
�=1

Hκ

where

Hκy(x) = Jy ′(x) +

(−1 + V (x) κ
x

κ
x

1 + V (x)

)
y(x), x ∈ (0,∞).

For the operator H and the radial Dirac operators Hκ the essential spectrum is well known to
be R\(−1, 1).

For the radial Dirac operators Hκ , we show that the eigenvalues in (−1, 1) accumulate,
e.g., at 1 if lim supx→∞ x2V (x) < − 1

8 (2κ + 1)2 and they do not accumulate at 1 if
lim infx→∞ x2V (x) > − 1

8 (2κ + 1)2. This is a generalization of a result in [10] which
was proved by applying the Levinson theorem (see [2]) and required in addition that∫ 1

0

∣∣V (x) − ρ

x

∣∣ dx < ∞ with some ρ ∈ [
0, 1

2

√
3
)
.

The key point of this paper is theorem 5.1 showing that lim infx→∞ x2V (x) > −∞
already implies that Hκ has no eigenvalues in [0, 1) for sufficiently large |κ|. For the proof,
the results of section 3 are used to show that a necessary interface condition for solutions of
the eigenvalue equation in (0, ω] and [ω,∞) cannot be satisfied.

Finally, theorem 5.1 and the eigenvalue accumulation criterion for the radial Dirac
operators together show that the eigenvalues of the Dirac operator in (−1, 1)

accumulate at 1 if lim sup
x→∞

x2V (x) < − 1
8 ,

do not accumulate at 1 if lim inf
x→∞ x2V (x) > − 1

8 .

An analogous result holds for the other endpoint −1.
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2. Riccati equations depending on some parameter

In this section, we study a family of Riccati differential equations

z′(x) = a(x, λ)z(x)2 + 2κb(x, λ)z(x) + c(x, λ), x ∈ �, (2.1)

on an interval � = (0, ω], 0 < ω < ∞, where κ ∈ I := R\(−β, β) with some constant
β > 0 and λ is a parameter varying in some interval � ⊂ R. We assume that the coefficients
a, b, c : � × � −→ R satisfy the following conditions:

(i) The functions b(·, λ) are locally integrable on � for all λ ∈ �, the functions b(x, ·) are
continuous on � for all x ∈ �, and there exists a locally integrable function B : � −→ R

such that 0 < b(x, λ) � B(x) for all (x, λ) ∈ � × � and a point ξ ∈ (0, ω) such that

δ := inf
λ∈�

∫ ω

ξ

b(t, λ) dt > 0. (2.2)

(ii) The functions a(·, λ), c(·, λ) are measurable on � for all λ ∈ �, the functions
a(x, ·), c(x, ·) are continuous on � for all x ∈ �,

α := sup
(x,λ)∈�×�

|a(x, λ)|
b(x, λ)

< ∞, γ := sup
(x,λ)∈�×�

|c(x, λ)|
b(x, λ)

< ∞, (2.3)

and α, γ satisfy the inequality

αγ < β2.

For a fixed (κ, λ) ∈ I ×�, a function z : � −→ R is called a solution of (2.1) if z is absolutely
continuous and (2.1) holds almost everywhere in �. Here we are interested in continuous and
bounded solutions of (2.1).

Theorem 2.1. If the coefficients of (2.1) satisfy the conditions (i) and (ii), then there exist
solutions zκ(·, λ) of the differential equation (2.1) for all (κ, λ) ∈ I × � such that zκ is
continuous on � × �, bounded by

µκ := γ

|κ| +
√

κ2 − αγ

for all κ ∈ I and has the following properties: If κ � β, then

zκ(ω, ·) ≡ 0 on �.

If κ < 0, then

lim inf
κ→−∞ inf

λ∈�
|κ|zκ(ω, λ) � 1

2γ∗ if γ∗ := inf
(x,λ)∈[ξ,ω]×�

c(x, λ)

b(x, λ)
> 0,

lim sup
κ→−∞

sup
λ∈�

|κ|zκ(ω, λ) � 1
2γ ∗ if γ ∗ := sup

(x,λ)∈[ξ,ω]×�

c(x, λ)

b(x, λ)
< 0.

Proof. First, we define

φ(x, λ) := −2
∫ ω

x

b(t, λ) dt, (x, λ) ∈ � × �.

Since b(x, ·) is continuous on � for all x ∈ �, |b(·, λ)| is bounded by B for all λ ∈ �, and
B is locally integrable on �, Lebesgue’s dominated convergence theorem implies that φ is
continuous on �×�. In addition, φ(·, λ) is a non-positive monotonically increasing function
on � for all λ ∈ � with ∂

∂x
φ(x, λ) = 2b(x, λ) and φ(ω, λ) = 0. For a fixed index κ ∈ I ,
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let Eκ be the space of continuous functions g : � × � −→ [−µκ,µκ ]. If we introduce the
Chebyshev metric

dκ(f, g) := sup
(x,λ)∈�×�

|f (x, λ) − g(x, λ)|, f, g ∈ Eκ ,

then (Eκ , dκ) is a complete metric space. Further, if κ � β, let

(Fκg)(x, λ) := −eκφ(x,λ)

∫ ω

x

[a(t, λ)g(t, λ)2 + c(t, λ)] e−κφ(t,λ) dt,

and if κ � −β, define

(Fκg)(x, λ) := eκφ(x,λ)

∫ x

0
[a(t, λ)g(t, λ)2 + c(t, λ)] e−κφ(t,λ) dt

for all (x, λ) ∈ � × � and g ∈ Eκ . From (2.3), |g(t, λ)| � µκ and αµ2
κ + γ = 2|κ|µκ , it

follows that

|a(t, λ)g(t, λ)2 + c(t, λ)| e−κφ(t,λ) � 2|κ|µκb(t, λ) e−κφ(t,λ)

= sign (−κ)µκ

∂

∂t
e−κφ(t,λ)

for all (t, λ) ∈ � × � and g ∈ Eκ . Hence, if κ � β, we have

|(Fκg)(x, λ)| � −µκ eκφ(x,λ)

∫ ω

x

∂

∂t
e−κφ(t,λ) dt = µκ(1 − eκφ(x,λ)) � µκ

since φ(ω, λ) = 0 and 0 � eκφ(x,λ) � 1. Further, if κ � −β, we get

|(Fκg)(x, λ)| � µκ eκφ(x,λ)

∫ x

0

∂

∂t
e−κφ(t,λ) dt = µκ(1 − ψ(λ) eκφ(x,λ)) � µκ

where ψ(λ) := limt→0 e−κφ(t,λ) (this limit exists since −κφ(·, λ) is a non-positive increasing
function) and

0 � ψ(λ) eκφ(x,λ) = lim
t→0

exp

(
2κ

∫ x

t

b(s, λ) ds

)
� 1.

These estimates imply that Fκg is well defined for all g ∈ Eκ and that |(Fκg)(x, λ)| is
bounded by µκ for all (x, λ) ∈ � × �. Moreover, by Lebesgue’s dominated convergence
theorem, Fκg is continuous on � × �. Hence, Fκ maps Eκ into itself. In the following,
we prove that Fκ : Eκ −→ Eκ is a contraction. For this let g, h ∈ Eκ . From (2.3) and
|g(t, λ)2 − h(t, λ)2| � 2µκdκ(g, h) we obtain that

|a(t, λ)(g(t, λ)2 − h(t, λ)2)| e−κφ(t,λ) � 2αµκdκ(g, h)b(t, λ) e−κφ(t,λ)

= sign (−κ)qκdκ(g, h)
∂

∂t
e−κφ(t,λ)

for all (x, λ) ∈ � × � where

0 � qκ := αµκ

|κ| = 1 −
√

κ2 − αγ

|κ| < 1.

Hence, if κ � β, then

|(Fκg)(x, λ) − (Fκh)(x, λ)| � −qκdκ(g, h) eκφ(x,λ)

∫ ω

x

∂

∂t
e−κφ(t,λ) dt

= qκdκ(g, h)(1 − eκφ(x,λ)) � qκdκ(g, h),
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and if κ � −β, it follows that

|(Fκg)(x, λ) − (Fκh)(x, λ)| � qκdκ(g, h) eκφ(x,λ)

∫ x

0

∂

∂t
e−κφ(t,λ) dt

= qκdκ(g, h)(1 − ψ(λ) eκφ(x,λ)) � qκdκ(g, h)

for all (x, λ) ∈ � × �. Thus Fκ is a contraction on Eκ . Now Banach’s fixed point theorem
implies that there exists a function zκ ∈ Eκ which satisfies zκ = Fκzκ , and it is easy to
verify that zκ(·, λ) is also a solution of the differential equation (2.1) for all (κ, λ) ∈ I × �.
Additionally, zκ(ω, ·) ≡ 0 on � if κ � β.

In order to prove the first of the last two estimates in theorem 2.1, assume that γ∗ > 0.
Since zκ = Fκzκ and φ(ω, λ) = 0, we obtain

zκ(ω, λ) =
∫ ω

0
c(t, λ) e−κφ(t,λ) dt +

∫ ω

0
a(t, λ)zκ(t, λ)2 e−κφ(t,λ) dt

for all (κ, λ) ∈ (−∞,−β] × �. From (2.2), (2.3) and the assumption that γ∗ > 0, it follows
that

2|κ|zκ(ω, λ) �
∫ ω

ξ

2γ∗|κ|b(t, λ) e−κφ(t,λ) dt −
∫ ξ

0
2γ |κ|b(t, λ) e−κφ(t,λ) dt

−
∫ ω

0
2αµ2

κ |κ|b(t, λ) e−κφ(t,λ) dt

= γ∗
∫ ω

ξ

∂

∂t
e−κφ(t,λ) dt − γ

∫ ξ

0

∂

∂t
e−κφ(t,λ) dt − αµ2

κ

∫ ω

0

∂

∂t
e−κφ(t,λ) dt

and further, observing that φ(ω, λ) = 0,

2|κ|zκ(ω, λ) � γ∗ − (γ∗ + γ ) e−κφ(ξ,λ) +
(
γ + αµ2

κ

)
ψ(λ) − αµ2

κ

� γ∗ − (γ∗ + γ ) e−κφ(ξ,λ) − αµ2
κ

� γ∗ − (γ∗ + γ ) e2κδ − αµ2
κ

for all κ ∈ (−∞,−β]. Since limκ→−∞ µκ = 0, we obtain

lim inf
κ→−∞ inf

λ∈�
|κ|zκ(ω, λ) � 1

2γ∗.

The proof of the last estimate is analogous. �

3. Dirac systems depending on some parameter

In the following, we consider the family of Dirac systems

Jy ′(x) + Qκ(x, λ)y(x) = 0, x ∈ �, (3.1)

on the interval � = (0, ω], 0 < ω < ∞, where κ ∈ I := R\(−β, β) with some β > 0, λ is a
parameter varying in some interval � ⊂ R, and

J :=
(

0 1
−1 0

)
, Qκ(x, λ) :=

(
a(x, λ) κb(x, λ)

κb(x, λ) c(x, λ)

)
, (x, λ) ∈ � × �. (3.2)

We assume that the coefficients a, b, c : � × � −→ R of Qκ in (3.2) satisfy the conditions
(i) and (ii) of the previous section.

For a fixed (κ, λ) ∈ I × �, a function y : � −→ R
2 is called a solution of (3.1), if (every

component of) y is absolutely continuous and (3.1) holds almost everywhere in �. Further,
a fundamental matrix of (3.1) is a function Y : � −→ M2(R) (the set of all 2 × 2 matrices
over R) with the property that every solution y of (3.1) can be expressed as y(x) = Y (x)c, x ∈
�, with some vector c ∈ R

2.
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Theorem 3.1. If the conditions (i) and (ii) are satisfied, then, for all (κ, λ) ∈ I × �, there
exists a fundamental matrix

Yκ(x, λ) =
(

u(1)
κ (x, λ) u(2)

κ (x, λ)

v(1)
κ (x, λ) v(2)

κ (x, λ)

)
, x ∈ �, (3.3)

of (3.1) with the following properties:

(a) The functions u(1)
κ , v(1)

κ are continuous on � × �,u(1)
κ (x, λ) > 0 and

u(1)
κ (x, λ)


� exp

(
−

√
κ2 − αγ

∫ ω

x

b(t, λ) dt

)
if κ ∈ [β,∞),

� exp

(√
κ2 − αγ

∫ ω

x

b(t, λ) dt

)
if κ ∈ (−∞,−β]

for all (x, κ, λ) ∈ � × I × �. Moreover,

sup
(x,λ)∈�×�

∣∣∣∣κ v(1)
κ (x, λ)

u
(1)
κ (x, λ)

∣∣∣∣ � α

for all κ ∈ I, v(1)
κ (ω, ·) ≡ 0 on � for all κ ∈ (−∞,−β], and

lim sup
κ→+∞

sup
λ∈�

|κ|v
(1)
κ (ω, λ)

u
(1)
κ (ω, λ)

� −1

2
α∗ if α∗ := inf

(x,λ)∈[ξ,ω]×�

a(x, λ)

b(x, λ)
> 0,

lim inf
κ→+∞ inf

λ∈�
|κ|v

(1)
κ (ω, λ)

u
(1)
κ (ω, λ)

� −1

2
α∗ if α∗ := sup

(x,λ)∈[ξ,ω]×�

a(x, λ)

b(x, λ)
< 0.

(b) The functions u(2)
κ , v(2)

κ are continuous on � × �, v(2)
κ (x, λ) > 0 and

v(2)
κ (x, λ)


�exp

(√
κ2 − αγ

∫ ω

x

b(t, λ) dt

)
if κ ∈ [β,∞),

�exp

(
−

√
κ2 − αγ

∫ ω

x

b(t, λ) dt

)
if κ ∈ (−∞,−β]

for all (x, κ, λ) ∈ � × I × �. In addition,

sup
(x,λ)∈�×�

∣∣∣∣κ u(2)
κ (x, λ)

v
(2)
κ (x, λ)

∣∣∣∣ � γ

for all κ ∈ I, u(2)
κ (ω, ·) ≡ 0 on � for all κ ∈ [β,∞), and

lim inf
κ→−∞ inf

λ∈�
|κ|u

(2)
κ (ω, λ)

v
(2)
κ (ω, λ)

� 1

2
γ∗ if γ∗ := inf

(x,λ)∈[ξ,ω]×�

c(x, λ)

b(x, λ)
> 0,

lim sup
κ→−∞

sup
λ∈�

|κ|u
(2)
κ (ω, λ)

v
(2)
κ (ω, λ)

� 1

2
γ ∗ if γ ∗ := sup

(x,λ)∈[ξ,ω]×�

c(x, λ)

b(x, λ)
< 0.

Proof. First we prove (b). For this purpose, consider the family of Riccati equations (2.1),
and let zκ(·, λ) be the solutions of theorem 2.1. If we define

v(2)
κ (x, λ) := exp

(∫ ω

x

a(t, λ)zκ(t, λ) + κb(t, λ) dt

)
, (x, λ) ∈ � × �,

and u(2)
κ := zκv

(2)
κ for all κ ∈ I , then the functions u(2)

κ , v(2)
κ are continuous on � × �, and, by

(2.1),

∂

∂x
v(2)

κ = −au(2)
κ − κbv(2)

κ ,
∂

∂x
u(2)

κ = κbu(2)
κ + cv(2)

κ .
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Thus,

y(2)
κ (x, λ) :=

(
u(2)

κ (x, λ)

v(2)
κ (x, λ)

)
, x ∈ �,

is a nontrivial solution of (3.1) for all (κ, λ) ∈ I × �. Further,

(sign κ) (azκ + κb) =
(
|κ| + (sign κ)

a

b
zκ

)
b

� (|κ| − αµκ)b =
√

κ2 − αγ b

implies the first two estimates in (b). Finally, by theorem 2.1,

sup
(x,λ)∈�×�

∣∣∣∣κ u(2)
κ (x, λ)

v
(2)
κ (x, λ)

∣∣∣∣ � |κ|µκ � γ

for all κ ∈ I, u(2)
κ (ω, ·) ≡ 0 on � for all κ ∈ [β,∞), and the last two estimates in (b) follow

from the definition of u(2)
κ and from the last two estimates in theorem 2.1.

In order to prove (a), we construct a solution of (3.1) which is linearly independent of y(2)
κ

by considering the Riccati differential equations

w′(x) = c(x, λ)w(x)2 − 2κb(x, λ)w(x) + a(x, λ), x ∈ �. (3.4)

Applying theorem 2.1 with a, c exchanged and κ replaced by −κ , we obtain that (3.4) has
solutions wκ(·, λ) for all (κ, λ) ∈ I × � with the properties that wκ is continuous on � × �

and bounded by

νκ := α

|κ| +
√

κ2 − αγ

for all κ ∈ I,wκ(ω, ·) ≡ 0 on � for all κ ∈ (−∞,−β], and

lim inf
κ→+∞ inf

λ∈�
|κ|wκ(ω, λ) � 1

2α∗ if α∗ > 0, (3.5)

lim sup
κ→+∞

sup
λ∈�

|κ|wκ(ω, λ) � 1
2α∗ if α∗ < 0. (3.6)

If we define

u(1)
κ (x, λ) := exp

(∫ ω

x

c(t, λ)wκ(t, λ) − κb(t, λ) dt

)
, (x, λ) ∈ � × �,

and v(1)
κ := −wκu

(1)
κ for all κ ∈ I , then u(1)

κ , v(1)
κ are continuous functions on � × �, and, by

(3.4),

∂

∂x
u(1)

κ = κbu(1)
κ + cv(1)

κ ,
∂

∂x
v(1)

κ = −au(1)
κ − κbv(1)

κ .

This implies that

y(1)
κ (x, λ) :=

(
u(1)

κ (x, λ)

v(1)
κ (x, λ)

)
, (x, λ) ∈ � × �,

is also a nontrivial solution of (3.1) for all (κ, λ) ∈ I ×�. The first two estimates in (a) follow
from

(sign κ)(cwκ − κb) =
(
−|κ| + (sign κ)

c

b
wκ

)
b � (−|κ| + γ νκ)b = −

√
κ2 − αγ b.

In addition, by theorem 2.1,

sup
(x,λ)∈�×�

∣∣∣∣κ v(1)
κ (x, λ)

u
(1)
κ (x, λ)

∣∣∣∣ � |κ|νκ � α



8664 H Schmid and C Tretter

for all κ ∈ I, v(1)
κ (ω, ·) ≡ 0 on � for all κ ∈ (−∞,−β], and the last two estimates in (a)

follow from the definition of v(1)
κ and from (3.5) and (3.6).

Finally, defining Yκ(x, λ) as in (3.3) and observing that

µκνκ = |κ| −
√

κ2 − αγ

|κ| +
√

κ2 − αγ
< 1,

we conclude that on � × �

det Yκ = u(1)
κ v(2)

κ (1 + wκzκ) � u(1)
κ v(2)

κ (1 − |wκ ||zκ |)
� u(1)

κ v(2)
κ (1 − µκνκ) > 0,

and therefore Yκ(·, λ) is a fundamental matrix of (3.1) for all (κ, λ) ∈ I × �. �

As a special case, we consider Dirac systems (3.1) with b(x, λ) = 1
x

, that is,

Jy ′(x) +

(
a(x, λ) κ

x

κ
x

c(x, λ)

)
y(x) = 0, x ∈ �. (3.7)

Corollary 3.2. Suppose that in (3.7) the functions a(·, λ), c(·, λ) are measurable on � for all
λ ∈ � and the functions a(x, ·), c(x, ·) are continuous on � for all x ∈ �. If

α := sup
(x,λ)∈�×�

|xa(x, λ)| < ∞, γ := sup
(x,λ)∈�×�

|xc(x, λ)| < ∞,

and the estimate αγ < β2 − 1
4 holds, then, for all (κ, λ) ∈ I × �, (3.7) is in the limit point

case at x = 0. Moreover, the Dirac system (3.7) has a square-integrable solution

yκ(x, λ) =
(

uκ(x, λ)

vκ(x, λ)

)
, x ∈ �,

such that yκ is continuous on � × �, where uκ(x, λ) > 0 if κ � β and vκ(x, λ) > 0 if
κ � −β. In addition,

lim sup
κ→+∞

sup
(x,λ)∈�×�

∣∣∣∣κ vκ(x, λ)

uκ(x, λ)

∣∣∣∣ � α, lim sup
κ→−∞

sup
(x,λ)∈�×�

∣∣∣∣κ uκ(x, λ)

vκ(x, λ)

∣∣∣∣ � γ,

and

lim inf
κ→+∞ inf

λ∈�
|κ| vκ(ω, λ)

uκ(ω, λ)
> 0 if sup

(x,λ)∈[ξ,ω]×�

xa(x, λ) < 0,

lim inf
κ→−∞ inf

λ∈�
|κ|uκ(ω, λ)

vκ(ω, λ)
> 0 if inf

(x,λ)∈[ξ,ω]×�
xc(x, λ) > 0

with some point ξ ∈ (0, ω).

Proof. If we set b(x, λ) := 1
x
, (x, λ) ∈ � × �, then the functions a, b, c : � × � −→ R

satisfy the conditions (i) and (ii) of section 2, and the differential equation (3.7) has the form
(3.1). Hence theorem 3.1 can be applied to (3.7). Since∫ ω

x

b(t, λ) dt = log
(ω

x

)
, x ∈ �,

we have

exp

(
±

√
κ2 − αγ

∫ ω

x

b(t, λ) dt

)
= ω±

√
κ2−αγ x∓

√
κ2−αγ , x ∈ �.
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Now let Yκ(x, λ) = (
y(1)

κ (x, λ) y(2)
κ (x, λ)

)
denote the fundamental matrix of (3.7) obtained

from theorem 3.1. The latter and the definitions of v(1)
κ and u(2)

κ in its proof yield that∣∣y(1)
κ (x, λ)

∣∣ � Cκx
√

κ2−αγ ,
∣∣y(2)

κ (x, λ)
∣∣ � C̃κx

−
√

κ2−αγ if κ ∈ [β,∞),∣∣y(1)
κ (x, λ)

∣∣ � C̃κx
−
√

κ2−αγ ,
∣∣y(2)

κ (x, λ)
∣∣ � Cκx

√
κ2−αγ if κ ∈ (−∞,−β]

with some positive constants Cκ and C̃κ (here | · | denotes the Euclidean norm in R
2). Therefore,

since
√

κ2 − αγ > 1
2 by assumption, the square-integrable solutions of (3.7) are constant

multiples of the functions

yκ(x, λ) :=
{

y(1)
κ (x, λ) if κ ∈ [β,∞),

y(2)
κ (x, λ) if κ ∈ (−∞,−β],

and the properties of yκ(x, λ) follow from the results in theorem 3.1. �

Remark 3.3. In particular, corollary 3.2 implies that vκ(ω, λ) > 0, λ ∈ �, for sufficiently
large |κ| and

lim
κ→−∞ sup

λ∈�

∣∣∣∣uκ(ω, λ)

vκ(ω, λ)

∣∣∣∣ = 0, inf
λ∈�

uκ(ω, λ)

vκ(ω, λ)
→ +∞ for κ → +∞,

if a(x, λ) � A < 0 for all (x, λ) ∈ [ξ, ω] ×� with some point ξ ∈ (0, ω). Similarly, we have
uκ(ω, λ) > 0, λ ∈ �, for sufficiently large |κ| and

lim
κ→+∞ sup

λ∈�

∣∣∣∣ vκ(ω, λ)

uκ(ω, λ)

∣∣∣∣ = 0, inf
λ∈�

vκ(ω, λ)

uκ(ω, λ)
→ +∞ for κ → −∞,

provided that c(x, λ) � C > 0 for all (x, λ) ∈ [ξ, ω] × �.

4. Principal solutions of Dirac systems

In the following, we present a continuity property and a comparison theorem for the principal
solutions of (3.1) when κ is fixed. The notion of principal solutions has been introduced
first for Sturm–Liouville problems (see, e.g., [5, chapter XI, section 6] or [8, chapter IV,
section 3]). A nontrivial solution y0 : � −→ R

2 of (3.1),

y0(x) =
(

u0(x)

v0(x)

)
, x ∈ �,

is called principal (at x = 0), if there exists a real-valued solution y of (3.1),

y(x) =
(

u(x)

v(x)

)
, x ∈ �,

which is linearly independent of y0, and either of the pair of conditions v(x) �= 0,

limx→0
v0(x)

v(x)
= 0 or u(x) �= 0, limx→0

u0(x)

u(x)
= 0 holds in a neighbourhood of x = 0 (see

section 2 in [10]).
In order to specify the principal solutions of (3.1) for fixed κ , we consider the fundamental

system of solutions

y(1)(x, λ) :=
(

u(1)(x, λ)

v(1)(x, λ)

)
, y(2)(x, λ) :=

(
u(2)(x, λ)

v(2)(x, λ)

)
from theorem 3.1, and we define

y0(x, λ) :=
{

y(1)(x, λ) if κ > 0,

y(2)(x, λ) if κ < 0.

Here and in the rest of this section, the index κ will always be omitted.
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In addition to the conditions (i) and (ii), we will also need the following assumption on
the coefficient b:

(iii) For each λ ∈ � we have
∫ ω

x

b(t, λ) dt → ∞ if x → 0.

An immediate consequence of (iii) and theorem 3.1 is:

Proposition 4.1. If the conditions (i), (ii) and (iii) hold, then the function y0(·, λ) is a principal
solution of (3.1) for every λ ∈ �. In addition, for a fixed λ ∈ �, a solution y of (3.1) is
principal if and only if y = Cy0(·, λ) with some constant C ∈ R\{0}.

We can also characterize the principal solutions of (3.1) by the asymptotic behaviour of
the Prüfer angles at the origin. If y : � −→ R

2 is a nontrivial solution of (3.1),

y(x) =
(

u(x)

v(x)

)
, x ∈ �,

then we can write the components of y in polar coordinates:

u(x) = ρ(x) cos φ(x), v(x) = ρ(x) sin φ(x), x ∈ �,

with ρ(x)2 = u(x)2 + v(x)2 �= 0 and

φ(x) =
{

arctan v(x)

u(x)
if u(x) �= 0,

arccot u(x)

v(x)
if v(x) �= 0,

where the branches of arctan and arccot are chosen such that φ : � −→ R is absolutely
continuous. The function φ is called Prüfer angle (or angle function) of y and it is uniquely
defined up to an additive constant kπ(k ∈ Z).

Proposition 4.2. Suppose that the conditions (i), (ii), and (iii) are satisfied. For a fixed
λ ∈ �, let y be a nontrivial solution of (3.1). Then every Prüfer angle of y is bounded on �.
Moreover, y is principal at x = 0 if and only if there exists an Prüfer angle φ0 of y such that
for all x ∈ �

φ0(x) ∈
{(−π

4 , π
4

)
if κ > 0,(

π
4 , 3π

4

)
if κ < 0.

(4.1)

Proof. For a fixed λ ∈ �, let y = y(·, λ) : � −→ R
2 be a nontrivial solution of (3.1),

y(x) =
(

u(x)

v(x)

)
, x ∈ �.

Then there exist constants c1, c2 ∈ R, |c1| + |c2| > 0, such that y(x) = c1y
(1)(x, λ) +

c2y
(2)(x, λ) for all x ∈ �. First we suppose that κ > 0. If c2 = 0, then y is principal at x = 0,

and from |v(1)(x, λ)| � α
κ
u(1)(x, λ) it follows that∣∣∣∣v(x)

u(x)

∣∣∣∣ =
∣∣∣∣v(1)(x, λ)

u(1)(x, λ)

∣∣∣∣ � α

κ
< 1

(note that u(1)(x, λ) > 0 for all (x, λ) ∈ � × �). Hence, if we define φ0(x) := Arctan v(x)

u(x)
,

where Arctan : R −→ (−π
2 , π

2

)
denotes the main branch of the function arctan, then φ0 is an
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Prüfer angle of y and φ0(x) ∈ (−π
4 , π

4

)
for all x ∈ �. Now, let c2 �= 0. Since v(2)(x, λ) > 0

for all (x, λ) ∈ � × � and

lim
x→0

∣∣∣∣u(1)(x, λ)

v(2)(x, λ)

∣∣∣∣ = lim
x→0

∣∣∣∣v(1)(x, λ)

v(2)(x, λ)

∣∣∣∣ = 0, sup
x∈�

∣∣∣∣u(2)(x, λ)

v(2)(x, λ)

∣∣∣∣ � γ

κ
,

we obtain that

lim sup
x→0

∣∣∣∣u(x)

v(x)

∣∣∣∣ = lim sup
x→0

∣∣∣∣∣∣
c1
c2

u(1)(x,λ)

v(2)(x,λ)
+ u(2)(x,λ)

v(2)(x,λ)

c1
c2

v(1)(x,λ)

v(2)(x,λ)
+ 1

∣∣∣∣∣∣ � γ

κ
< 1. (4.2)

Since any Prüfer angle φ of y has the form

φ(x) = Arccot
u(x)

v(x)
+ kπ,

where Arccot : R −→ (0, π) is the main branch of arccot and k ∈ Z, it follows that φ is
bounded on �, and (4.2) implies that kπ + π

4 < φ(x) < kπ + 3π
4 in a neighbourhood of x = 0.

In particular, φ(x) �∈ (−π
4 , π

4

)
for sufficiently small x ∈ �. By a similar reasoning, we obtain

the assertion for κ < 0. �

The following result is a comparison theorem (with respect to the parameter λ) for the
principal solutions of (3.1).

Theorem 4.3. Suppose that Q has the form (3.2) and that the conditions (i), (ii) and (iii) are
satisfied. Moreover, let y0(·, λ) be a principal solution of (3.1) for every λ ∈ �, and assume
that φ0(·, λ) is the Prüfer angle of y0(·, λ) which satisfies (4.1) for all x ∈ �.

(a) If Q(·, λ1) � Q(·, λ2) holds a.e. in � for all λ1 < λ2 in �, then the function
λ 
−→ φ0(ω, λ) is increasing on �.

(b) If Q(·, λ1) � Q(·, λ2) holds a.e. in � for all λ1 < λ2 in �, then the function
λ 
−→ φ0(ω, λ) is decreasing on �.

Proof. Here, we will verify only (a) in the case κ > 0; the proof of the remaining assertions is
analogous. To this end, we assume to the contrary that φ0(ω, λ1) > φ0(ω, λ2) holds for some
λ1 < λ2 in �. Let

θ := φ0(ω, λ1) + φ0(ω, λ2)

2
.

If y is the solution of (3.1) for λ = λ1 which satisfies

y(ω) =
(

cos θ

sin θ

)
,

then y and y0(·, λ1) are linearly independent due to the choice of θ . Moreover, if φ

denotes the Prüfer angle of y with φ(ω) = θ , then φ0(ω, λ1) > φ(ω) > φ0(ω, λ2).
Since −Q(·, λ1) � −Q(·, λ2) holds a.e. in �, we can apply the Comparison theorem
16.1 in [13] which yields φ0(x, λ1) � φ(x) � φ0(x, λ2) for all x ∈ (0, ω]. From
φ0(x, λi) ∈ (−π

4 , π
4

)
, i ∈ {1, 2}, it follows that φ(x) ∈ (−π

4 , π
4

)
for all x ∈ �. Hence,

by proposition 4.2, y is a principal solution of (3.1), and proposition 4.1 implies that y is a
constant multiple of y0(·, λ1), a contradiction. �
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5. Application to the Dirac operator

In the following, we apply the results of the previous sections to the Dirac operator

H = −iα · ∇ + α0 + V (|x|)I
in L2(R3)4 with a spherically symmetric potential V : (0,∞) −→ R. The units are chosen
such that h̄ = m = c = 1, I is the 4 × 4 unit matrix, and

α = (α1, α2, α3),

where αk are Hermitian 4 × 4 matrices satisfying the commutation relations

αiαj + αjαi = 2δij I, i, j ∈ {0, . . . , 3}.
Further, we assume that the potential V satisfies

(L) V ∈ L∞
loc(0,∞), lim

x→∞ V (x) = 0, lim sup
x→0

|xV (x)| <
1

2

√
3.

Then, by [11, theorem 1], the operator H is self-adjoint on the domain D(H) = H1(R3)4,
and

σess(H) = (−∞,−1] ∪ [1,∞).

Since V is spherically symmetric, there exists an orthogonal decomposition

L2(R3)4 =
⊕

κ∈Z\{0}

�(κ)⊕
�=1

Sκ,�

which completely reduces H (see [13, section 1]), and the restriction H � Sκ,� of H to Sκ,�

is unitarily equivalent to the so-called radial Dirac operator Hκ (or separated Dirac operator,
compare [3]) given by

Hκy(x) = Jy ′(x) +

(
−1 + V (x) κ

x

κ
x

1 + V (x)

)
y(x), x ∈ (0,∞),

and D(Hκ) = H1(0,∞)2. In particular, each Hκ is a self-adjoint operator and

H ∼=
⊕

κ∈Z\{0}

�(κ)⊕
�=1

Hκ.

Now, from theorem 16.6 in [13] it follows that R\(−1, 1) ⊂ σess(Hκ), and since
σess(H) ∩ (−1, 1) = ∅, theorem XIII.85(d) in [9] implies that σess(Hκ) ∩ (−1, 1) = ∅.
Hence, σess(Hκ) = (−∞,−1] ∪ [1,∞) is the essential spectrum of the radial Dirac operator
Hκ . Moreover, by theorem XIII.85(e) in [9], we have the following relation between the point
spectra of H and Hκ :

σp(H) =
⋃

κ∈Z\{0}
σp(Hκ).

This means, a point λ ∈ R is an eigenvalue of H if and only if there exists an index κ ∈ Z\{0}
such that λ is an eigenvalue of Hκ .

Since σess(H) = R\(−1, 1),H has only discrete eigenvalues of finite multiplicity in the
gap (−1, 1), and these eigenvalues can accumulate at most at the boundary points ±1. In the
following, we investigate the problem whether ±1 are accumulation points of eigenvalues of
H or not.
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Theorem 5.1. Let λ0 ∈ (−1, 1) and set � := [λ0, 1). If lim infx→∞ x2V (x) > −∞, then Hκ

has no eigenvalues in � for sufficiently large |κ|.
Proof. A point λ ∈ (−1, 1) is an eigenvalue of Hκ, κ ∈ Z\{0}, if and only if the Dirac system

Jy ′(x) +

(
V (x) − 1 − λ κ

x
κ
x

V (x) + 1 − λ

)
y(x) = 0, x ∈ (0,∞), (5.1)

has a nontrivial solution y ∈ L2(0,∞)2. Now, we fix some 0 < ε < 1 + λ0. As
limx→∞ V (x) = 0 and lim infx→∞ x2V (x) > −∞, there exist a point ξ ∈ (0,∞) and a
constant η > 0 such that |V (x)| � ε and V (x) � − η

x2 for all x ∈ [ξ,∞). Set ω := ξ + 1.
Further, since V is locally bounded on (0,∞) and lim supx→0 |xV (x)| < ∞, there exists a
constant ρ > 0 with the property that |V (x) ± 1 − λ| � ρ

x
for all x ∈ � := (0, ω) and

λ ∈ �. If we define a(x, λ) := V (x) − 1 − λ, c(x, λ) := V (x) + 1 − λ and b(x, λ) := 1
x

for (x, λ) ∈ � × �, then the functions a, b, c : � × � −→ R satisfy the conditions (i), (ii)
and (iii) specified in sections 2 and 4, and the differential equation (5.1) has the form (3.1). In
particular,

α := sup
(x,λ)∈�×�

|xa(x, λ)| � ρ, γ := sup
(x,λ)∈�×�

|xc(x, λ)| � ρ.

With some constant β such that β2 > ρ2 + 1
4 , corollary 3.2 implies that the Dirac system (5.1)

has square-integrable solutions

yκ(x, λ) =
(

uκ(x, λ)

vκ(x, λ)

)
, x ∈ �,

such that yκ is continuous on � × � for all κ ∈ I := R\(−β, β), uκ(x, λ) > 0 if κ � β and
vκ(x, λ) > 0 if κ � −β. Moreover, since a(x, λ) � ε − 1 − λ0 < 0 for all x ∈ [ξ, ω], there
exists a number κ1 > 0 such that vκ(ω, λ) > 0 for all |κ| � κ1, and

lim
κ→−∞ sup

λ∈�

∣∣∣∣uκ(ω, λ)

vκ(ω, λ)

∣∣∣∣ = 0, inf
λ∈�

uκ(ω, λ)

vκ(ω, λ)
→ +∞ for κ → +∞ (5.2)

(see remark 3.3). Now, since (5.1) is in the limit point case at x = 0 for all (κ, λ) ∈ I × � by
corollary 3.2, a point λ ∈ � is an eigenvalue of Hκ if and only if (5.1), restricted to [ω,∞),
has a solution y ∈ L2[ω,∞)2 satisfying the interface condition

y(ω) = Cyκ(ω, λ) (5.3)

with some constant C ∈ R\{0}. In the following, we will reduce the eigenvalue equation for
Hκ to a λ-nonlinear Sturm–Liouville problem on the interval [ω,∞). For fixed λ ∈ �, by the
transformation

y(x) =
(

xκŵ(x)

x−κw(x)

)
, x ∈ [ω,∞), (5.4)

the system (5.1) on the x-interval [ω,∞) is equivalent to the Sturm–Liouville equation

(pκ(x, λ)w′(x))′ − qκ(x, λ)w(x) = 0, x ∈ [ω,∞), (5.5)

where

pκ(x, λ) = x−2κ

1 + λ − V (x)
, qκ(x, λ) = x−2κ(1 − λ + V (x)), (5.6)

and ŵ(x) = pκ(x, λ)w′(x). In order to establish the boundary conditions, we write (5.3) in
the form

ω2κ pκ(ω, λ)w′(ω)

w(ω)
= uκ(ω, λ)

vκ(ω, λ)
. (5.7)
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Further, from limx→∞ V (x) = 0 it follows that qκ(x, λ) > 0 for sufficiently large x, and
lemmas A.1 and A.2 in [10] imply that a solution w of (5.5) satisfies x−κw, xκŵ ∈ L2[ω,∞)

if and only if w is principal at ∞. Hence, a point λ ∈ � is an eigenvalue of Hκ if and only if
there exists a principal solution w = wκ(·, λ) of (5.5) satisfying (5.7). Next, we will establish
some bounds on the left-hand side of (5.7). Note that

x−2κ

2 + ε
� p(x, λ) � x−2κ+2

1 + λ0 − ε
(5.8)

and

−ηx−2κ−2 � q(x, λ) � (1 − λ0 + ε)x−2κ (5.9)

for all x ∈ [ω,∞) and (κ, λ) ∈ I × �. If we define

ρκ := κ − 1

2
−

√(
κ − 1

2

)2

+ 1 − (λ0 − ε)2 = (λ0 − ε)2 − 1

κ − 1
2 +

√(
κ − 1

2

)2
+ 1 − (λ0 − ε)2

and

σκ := κ +
1

2
−

√(
κ +

1

2

)2

− η(2 + ε) = η(2 + ε)

κ + 1
2 +

√(
κ + 1

2

)2 − η(2 + ε)

for all |κ| � κ2 with some constant κ2 > 1
2 +

√
η(2 + ε), then xρκ is a principal solution of the

Euler equation(
x−2κ+2

1 + λ0 − ε
w′(x)

)′
− (1 − λ0 + ε)x−2κw(x) = 0, x ∈ [ω,∞),

and xσκ is a principal solution of the Euler equation(
x−2κ

2 + ε
w′(x)

)′
+ ηx−2κ−2w(x) = 0, x ∈ [ω,∞).

Because of the estimates (5.8) and (5.9), we can apply the comparison theorem [5, chapter XI,
corollary 6.5] which yields that a principal solution wκ(·, λ) of (5.5) satisfies wκ(ω, λ) �= 0
and

ρκ

1 + λ0 − ε
ω−2κ+1 � pκ(ω, λ)w′

κ(ω, λ)

wκ(ω, λ)
� σκ

2 + ε
ω−2κ−1

for all (κ, λ) ∈ I × �. Hence,

ω

1 + λ0 − ε
ρκ � ω2κ pκ(ω, λ)w′

κ(ω, λ)

wκ(ω, λ)
� 1

ω(2 + ε)
σκ

for all (κ, λ) ∈ I ×�. Since limκ→+∞ ρκ = limκ→+∞ σκ = 0 and ρκ, σκ → −∞ as κ → −∞,
we obtain that

lim
κ→+∞ sup

λ∈�

∣∣∣∣ω2κ pκ(ω, λ)w′
κ(ω, λ)

wκ(ω, λ)

∣∣∣∣ = 0

and

sup
λ∈�

ω2κ pκ(ω, λ)w′
κ(ω, λ)

wκ(ω, λ)
→ −∞ for κ → −∞.

Finally, this result and the asymptotic behaviour (5.2) of the right-hand side of (5.7) for
κ → ±∞ imply that the equation in (5.7) cannot hold for any λ ∈ � if |κ| is sufficiently large.

�



Eigenvalue accumulation for Dirac operators 8671

Theorem 5.2. For a fixed κ ∈ Z\{0}, the discrete eigenvalues of the radial Dirac operator
Hκ accumulate at 1 if

lim sup
x→∞

x2V (x) < − 1
8 (2κ + 1)2,

and they do not accumulate at 1 if

lim inf
x→∞ x2V (x) > − 1

8 (2κ + 1)2.

Proof. Let κ ∈ Z\{0} be fixed and set � := [0, 1). Since lim supx→0 |xV (x)| < 1
2

√
3, there

exist a point ω ∈ (0,∞) and a constant 0 < ρ < 1
2

√
3 such that |V (x) ± 1 − λ| � ρ

x
for

all x ∈ � := (0, ω] and λ ∈ � = [0, 1]. If we define a(x, λ) := V (x) − 1 − λ, c(x, λ) :=
V (x) + 1 − λ and b(x, λ) := 1

x
for (x, λ) ∈ � × �, then the functions a, b, c : � × � −→ R

satisfy the conditions (i), (ii) and (iii) specified in sections 2 and 4, and the differential
equation (5.1) has the form (3.1). In particular,

α := sup
(x,λ)∈�×�

|xa(x, λ)| � ρ, γ := sup
(x,λ)∈�×�

|xc(x, λ)| � ρ,

and ρ2 < 3
4 � κ2 − 1

4 . Now, from corollary 3.2 and proposition 4.1 it follows that the Dirac
system (5.1) has square-integrable principal solutions

y0(x, λ) =
(

u0(x, λ)

v0(x, λ)

)
, x ∈ �,

such that y0 is continuous on �×�. Moreover, if φ0(·, λ) is the Prüfer angle of y0(·, λ) which
satisfies (4.1) for all (x, λ) ∈ �×�, then theorem 4.3 implies that the function λ 
−→ φ0(ω, λ)

is monotonically increasing on the interval �. By the existence and uniqueness theorem (see
[13, theorem 2.1], for example), we can extend the solution y0 of (5.1) and its Prüfer angle φ0

continuously to (0,∞) × �, and the comparison theorem 16.1 in [13] yields that the Prüfer
angle φ0(x, ·) is increasing on � for every x ∈ [ω,∞).

Now, as limx→∞ V (x) = 0, there exists a point ξ ∈ (ω,∞) such that |V (x)| < 1 for all
x ∈ [ξ,∞). Note that (5.1) is in the limit point case at x = 0 for all λ ∈ �. Hence, for any
τ ∈ [ξ,∞), a point λ ∈ � is an eigenvalue of Hκ if and only if (5.1), restricted to [τ,∞), has
a solution y ∈ L2[τ,∞)2 satisfying the interface condition

y(τ) = Cy0(τ, λ) (5.10)

with some constant C ∈ R\{0}. As in the proof of theorem 5.1 we will reduce the eigenvalue
equation for Hκ to a λ-nonlinear Sturm–Liouville problem on the interval [τ,∞). By the
transformation (5.4), the system (5.1) on the x-interval [τ,∞) is equivalent to the Sturm–
Liouville equation (5.5) with coefficients (5.6) (note that 1 + λ − V (x) � 1 − V (x) > 0 for
all x � τ and λ ∈ �). Further, if we define

α(λ) := τ−κu0(τ, λ), β(λ) := −τ κv0(τ, λ),

then the interface condition (5.10) is equivalent to

α(λ)w(τ) + β(λ)ŵ(τ ) = 0. (5.11)

Now, from lemmas A.1 and A.2 in [10] it follows that a solution w of (5.5) satisfies
x−κw, xκŵ ∈ L2[τ,∞) if and only if w is principal at ∞. Therefore, a point λ ∈ � is
an eigenvalue of Hκ if and only if there exists a principal solution w of (5.5) satisfying (5.11).
Hence, the eigenvalues of Hκ in � coincide with the eigenvalues of the λ-nonlinear Sturm–
Liouville problem (5.5) and (5.11). Such λ-nonlinear boundary value problems have been
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considered in [10], and in order to apply the results therein, we need to verify the conditions
(i)–(iv) and (P), (M) specified in section 4 of [10].

Obviously, pκ > 0, and the functions p−1
κ , qκ are continuous on [τ,∞) × �, which

shows (i) and (ii). Moreover, there exists a continuous function ζ : � −→ (τ,∞) such that
|V | � 1

2 (1 − λ) on [ζ(λ),∞) for all λ ∈ �, and we obtain the estimates

1

2
x2κ � 1

pκ(x, λ)
� 2x2κ ,

1

2
(1 − λ)x−2κ � qκ(x, λ) � 3

2
(1 − λ)x−2κ

for x ∈ [ζ(λ),∞) and λ ∈ �. Hence, by theorem 4.4 in [10], the conditions (iii) and (P) are
satisfied. Additionally, the functions α, β : � −→ R are continuous, and since y0(τ, λ) �= 0
by the existence and uniqueness theorem, we have |α(λ)|+ |β(λ)| �= 0 for all λ ∈ �. Since the
function x−κv0(·, λ) is a nontrivial solution of (5.5) on [ξ, τ ], it has no accumulation points of
zeros in this compact interval according to the separation theorem. Hence, we can assume that
v0(τ, 1) �= 0 (otherwise, replace τ by a point in [ξ, τ ] with this property). Now, as v0(τ, λ)

depends continuously on λ ∈ �, we can find a point µ ∈ � such that v0(τ, λ) > 0 and
therefore β(λ) �= 0 for all λ ∈ [µ, 1]. Hence, condition (iv) is satisfied. It remains to verify
(M). Since

φ0(τ, λ) = Arccot
u0(τ, λ)

v0(τ, λ)
+ kπ

with some constant k = k(λ) ∈ Z and φ0(τ, ·) is monotonically increasing on [µ, 1), we
obtain that the mapping

λ 
−→ α(λ)

β(λ)
= −τ−2κ cot φ0(τ, λ)

is also increasing on [µ, 1). Moreover, pκ(x, ·) and qκ(x, ·) are decreasing with respect to λ

for each x ∈ [τ,∞), and therefore the monotonicity condition (M) is satisfied on [µ, 1).
Now, corollary 4.1 in [10] yields that the eigenvalues of the radial Dirac operator Hκ in

the interval [µ, 1) accumulate at 1 if and only if(
x−2κw′(x)

2 − V (x)

)′
− x−2κV (x)w(x) = 0 (5.12)

is oscillatory at ∞. Further, we can apply Sturm’s comparison theorem to (5.12) and the Euler
equation

(xγ +1w′(x))′ − ηxγ−1w(x) = 0. (5.13)

which is oscillatory if η < − 1
4γ 2 and non-oscillatory if η > − 1

4γ 2 (note that x− 1
2 γ±

√
η+ 1

4 γ 2

are fundamental solutions of (5.13)). Hence, if

lim sup
x→∞

x2V (x) < − 1
8 (2κ + 1)2,

then (5.12) is oscillatory at ∞, and if

lim inf
x→∞ x2V (x) > − 1

8 (2κ + 1)2,

then (5.12) is non-oscillatory, which completes the proof of theorem 5.2. �

Remark 5.3. Theorem 5.2 was proved in [10] under the additional assumption that∫ 1
0 |V (x)− ρ

x
| dx < ∞ with some ρ ∈ [

0, 1
2

√
3
)
. Under stronger assumptions like continuous

differentiability and boundedness at 0 of the potential it was proved before by [4]. The
condition V ∈ L∞

loc(0,∞) in (L) is needed in the following theorem on the whole Dirac
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operator H, in contrast to all other above-mentioned papers where only the radial Dirac
operators Hκ are studied.

Theorem 5.4. Suppose that the potential V fulfils the assumption (L). Then the eigenvalues
of the Dirac operator H in (−1, 1) accumulate at 1 if

lim sup
x→∞

x2V (x) < − 1
8 ,

and they do not accumulate at 1 if

lim inf
x→∞ x2V (x) > − 1

8 .

Proof. Note that 1 is an accumulation point of eigenvalues for H if there exists at least one
Hκ, κ ∈ Z\{0}, such that 1 is an accumulation point of eigenvalues for Hκ . Moreover, 1 is
no accumulation point of eigenvalues for H if at most finitely many Hκ have at most finitely
many eigenvalues in (0, 1). Now the assertions follow from theorems 5.2 and 5.1. �

By a similar reasoning, reducing (5.1) to a Sturm–Liouville equation for the first
component in (5.4), we obtain analogous results concerning the accumulation of eigenvalues
of H at −1:

Theorem 5.5. Suppose that the potential V fulfils the hypothesis (L). Then the eigenvalues of
the Dirac operator H in (−1, 1) accumulate at −1 if

lim inf
x→∞ x2V (x) > 1

8 ,

and they do not accumulate at −1 if

lim sup
x→∞

x2V (x) < 1
8 .

Remark 5.6. It is well known (compare [12, theorem 10.37]) that −1 is not an accumulation
point of eigenvalues of the Dirac operator H if the potential V is non-positive, i.e., V (x) � 0
for x ∈ (0,∞). Theorem 5.4 reproves this result since in this case lim supx→∞ x2V (x) < 1

8 .
In [6] the example of a potential V (x) = −C/(1 + x2) with some positive constant C is
considered, and it is proved that the gap (−1, 1) contains infinitely many eigenvalues if C > 1

8

but only a finite number if 0 < C < 1
8 . The same result can be obtained by theorems 5.4 and

5.5 observing that limx→∞ x2V (x) = −C.
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